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We study dynamic phenomena in a large social network of nearly 3�104 individuals who interact in the
large virtual world of a massive multiplayer online role playing game. On the basis of a database received from
the online game server, we examine the structure of the friendship network and human dynamics. To investi-
gate the relation between networks of acquaintances in virtual and real worlds, we carried out a survey among
the players. We show that, even though the virtual network did not develop as a growing graph of an under-
lying network of social acquaintances in the real world, it influences it. Furthermore we find very interesting
scaling laws concerning human dynamics. Our research shows how long people are interested in a single task
and how much time they devote to it. Surprisingly, exponent values in both cases are close to −1. We calculate
the activity of individuals, i.e., the relative time daily devoted to interactions with others in the artificial society.
Our research shows that the distribution of activity is not uniform and is highly correlated with the degree of
the node, and that such human activity has a significant influence on dynamic phenomena, e.g., epidemic
spreading and rumor propagation, in complex networks. We find that spreading is accelerated �an epidemic� or
decelerated �a rumor� as a result of superspreaders’ various behavior.
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I. INTRODUCTION

In recent years investigations of complex networks have
attracted the physics community’s great interest. It has been
discovered that the structures of various biological, technical,
economical, and social systems have the form of complex
networks �1–3�. The advent of modern database technology
has greatly advanced the statistical study of networks. Be-
cause the available data sets are vast, it is possible to use
techniques of statistical physics �2�.

Studying the statistical properties of social, e.g., friend-
ship, networks remains a challenge. It is possible to assess
the form of degree distribution with a survey, as in the case
of the web of human sexual contacts �4�. However, it is much
more difficult to learn about other important properties of
networks, because there are no data on their entirety. A sur-
vey often provides data on a small sample only.

Progress in information technology has made it possible
to investigate the structure of the social networks of interper-
sonal interactions maintained over the internet, e.g. e-mail
networks �5� and web-based social networks of artificial
communities �6�. However, there is still an unexplored area
of research. In recent years online games have become in-
creasingly popular and have attracted an increasing number
of players, who interact in the large virtual world of massive
multiplayer online role playing games �MMORPGs�.

A MMORPG is a network game in which players enter a
virtual world as characters they have invented—gaining vir-
tual life. This virtual world takes the form of a game server
connected to the internet, on which accounts are registered

for users who log in through special game client programs.
The rules allow players to create more than one character on
one account, with each of those characters having its own
personality �further in the text we refer to such characters as
individuals�. Thousands of people can play on one server—
they become a virtual society—so they share the common
culture, area, identity, and interactions in the network of in-
terpersonal relationships.

Individuals exploring this virtual world can collect funds,
trade, organize in groups of different sizes which can make
alliances or wage war, etc. All individuals can add, by mutual
consent, other people to their databases of friends. In this
way an undirected friendship network is formed. Playing
time, the network of interpersonal relations �the friendship
network�, and the network’s expansion, are the observables
that illustrate the activity of the virtual society and provide
an opportunity to study human dynamics. Moreover, a sur-
vey carried out among the players can show the influence of
this activity on the real world.

In recent years dynamic phenomena in social networks
like epidemic spreading and rumor propagation have been
investigated with different models of interpersonal interac-
tions �7,8�. Different approaches to the generation of graphs
with desirable properties have been used, e.g., degree distri-
bution or correlations between the degrees of nodes �2�. The
influence of the heavy-tailed distribution of the intercontact
times between susceptible and infected individuals on the
spreading of computer viruses has been presented in �9�. We
believe that human social activity has a strong influence on
various dynamic phenomena in social networks.

The first aim of this work is to introduce a data set de-
scribing a large social network of an online game �10�, which
consists of almost 3�104 individuals. The project was
started in Poland. We present data collected during its two
years of existence. We show that the structure of this network
has similar properties to those of other social networks. We
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have found interesting scaling laws concerning human dy-
namics �11–13�, e.g., duration of player activity in the virtual
world. To study the structure of the network and of human
activity, we analyzed data containing the list of all friends,
creation date, last log-in date, and accumulative �total� play-
ing time of each individual. The network under consideration
consisted of a collection of individuals �network nodes� con-
nected with one another by friendly relationships �network
links�.

The second aim of our work is to investigate the influence
of human social activity on dynamic phenomena in a social
network. In the present work we use data on a social network
consisting of 6�103 individuals. It is a giant component of a
network of individuals who interact in the large virtual world
of the aforementioned MMORPG �14�. On the basis of play-
ing time, we calculate the activity A of individuals, i.e., the
relative time devoted daily to interactions with others. It has
often been assumed in models of epidemic spreading that the
intensity of interactions with others is the same for each in-
dividual. Our research has shown that the distribution of ac-
tivity is not uniform and is highly correlated with the degree
of the node. On the basis of human activity calculated as
above, we investigate epidemic spreading �on the basis of a
susceptible-infected-recovered �SIR� model� and rumor
propagation in a real social network.

The paper is organized as follows. In Secs. II and IV we
describe the structure of a friendship network and calculate
parameters of human activity. In Sec. III we present results
of a survey. Next, in Sec. V �using results from Sec. IV� we
investigate epidemic spreading and, in Sec. VI, rumor propa-
gation in a real social network. Section VII has the conclu-
sions.

II. THE STRUCTURE OF THE NETWORK

Basic network measures of the whole network and the
giant component �GC� �1� are presented in Table I. This net-
work consists of 28 011 individuals but for many of them the
number of connections k equals zero. This means that those
characters have no friends on their lists. Most individuals
with k=0 are abandoned characters who do not appear in the
virtual world and who have therefore lost all their contacts
with those still active, or are new characters �cf. Fig. 5, in
which one can see numerous individuals who have spent
1–10 days in the game�. The GC contains almost all indi-
viduals whose degree is greater than zero �6065 characters�;
only 252 individuals with k�0 do not belong to the GC �i.e.,

only 4%�. It is noteworthy that the maximal value of k is 64
individuals, which is the maximal number imposed by game
mechanisms. However, this restriction does not influence the
form of the degree distribution, because there is only one
individual with k=64 in the network �and nine individuals
with k�60�.

The average path length �l� in the GC is similar to that in
a random graph. A high value of the clustering coefficient
and a short average path length �l� are characteristic features
of social networks �2,15,16�; they are typical for small-world
networks �17�. The degree distribution of the network is plot-
ted in Fig. 1. Deviations from power-law behavior at small
values of degree are observed in some networks �2,18,19�. In
such cases the fitting can be improved by using the functions
P�k���k+k0�−�, e.g., for out-degree distribution of the world
wide web �WWW�, k0=6.94 and �=2.82 �2,18�. However in
our case the range of values of the degree is relatively small
�less than two orders of magnitude, k�64�. Therefore, we
use two different fitting functions: P�k���k+k0�−�1 �k0
=6.2�0.9; �1=2.9�0.1—note that the values are very simi-
lar to those observed for the WWW network� and P�k�
�k−�2 exp�−�k�, ��=0.048�0.005; �2=1.1�0.1�.1 Both
functions provide good fits to the observed data �R�0.98�.

The aforementioned results suggest that for such a short
range of degree observed in the network under investigation
it is possible to find different �two-parameter� functions that
fit. Data from the degree distribution cannot explain which
function fits better. However, in our case we have additional
data on individuals’ activity and the relation between an in-
dividual’s activity and its degree. These data indicate that the
degree distribution follows an exponential decay �for more
details see Sec. IV�.

In the network under investigation, the greater the k, the
greater the average degree of nearest neighbors kNN. Hence,
the network is assortatively mixed by degree; such a corre-
lation has been observed in many social networks �20�. In
social networks it is entirely possible, and is often assumed
in sociological literature, that similar people attract one an-

1Computations were performed using STATISTICA v.7.

TABLE I. Average properties of the whole network and the
giant component �GC� and a comparison with a random graph �RG�
with the same number of nodes N and the same average degree �k�.

N C �l� �k� kmax

Network 28011 0.02 1.4 64

RG 28011 0.006 29 1.4

GC 6065 0.1 4.8 6.4 64

RG 6065 0.006 4.8 6.4

FIG. 1. Degree distribution P�k�. The results can be approxi-
mated using the fitting function P�k��k−0.65 exp�−1.4k−0.35�
�dashed line�.
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other. The relation kNN�k� can be approximated with the
power-law relation kNN�k��k0.18�0.01 �R2=0.93�. A similar
value of the exponent �0.2� has been found in other social
networks �21�.

The behavior of the clustering coefficient C is an interest-
ing problem �1,2�. We measure the clustering coefficient of
the ith node as the number of connections between neighbors
Ei divided by the maximal number of possible connections:

C =
Ei

ki�ki − 1�/2
. �1�

The local clustering coefficient C�k� is negatively corre-
lated with the degree of the node k, showing the existence of
a power law C�k��k−� with �=0.44�0.02 �R2=0.98�. A
slightly lower value of the exponent � has been observed in
other social networks, 0.33 �6�, and 0.35 in a network con-
sisting of over 1�106 nodes �21�. The power-law relation
C�k� is similar to the relationship in hierarchical networks
�22,23�. However, it has been recently shown �24� that most
observed degree dependence of clustering coefficients fol-
lows from degree mixing patterns.

To check whether the observed decay C�k� is just a con-
sequence of assortative mixing we calculate the clustering

coefficient C̃ using the algorithm presented in Ref. �24�. Ac-

cording to the definition, C̃ allows us to quantify the degree
among the neighbors of a node, independently of its degree

and the degree of its neighbors. The relation between C, C̃,
and the node degree k is shown in Fig. 2. For low degree we
do not observe a substantial difference between the two defi-
nitions of a clustering coefficient, which provide similar re-
sults. However, the greater k, the greater the difference in

values of C�k� and C̃�k�. For k�60 the clustering coefficient

C̃ is approximately three times larger than C. This result
shows that the variations in the clustering coefficient C with
vertex degrees just reflect partially the existence of degree
correlations.

III. RESULTS OF A POLL

With the server continually accessible for two years and
its software updated, there was an excellent opportunity to
create a continually evolving virtual space where a specific
local society could come into being. Social interactions with
other players are an important part of each MMORPG. On
the one hand, such interactions influence the network of ac-
quaintances in the real world. On the other, some preexisting
acquaintances from the real world are maintained in the vir-
tual one, too. To investigate the relation between networks of
acquaintances in the virtual and real worlds, we carried out a
survey among active players. As mentioned in the Introduc-
tion, a survey provides data on a small sample of a network.

Only 6% of active players were interested in completing
our survey �360 people�. Moreover, they were players who
had spent many months in the game �on average
16.4 months� and had numerous friends inside the game so
answers from people for whom the game is an important part
of their life dominate the results. We asked five questions. �a�
How many people are on your list of friends—k? �b� How
long have you played this game—TL? �c� How many people
from your list of friends did you know before you started to
play—NC? �d� How many people whom you got to know in
the virtual world have you met �at least once� in the real
world—ND? �e� With how many people that you got to know
in the virtual world and have met in the real world do you
maintain social contacts in the real world �you contact each
other at least once a week�—NE?

The declared average number of friends was about
18.4�1.6 characters. Many players said that they found out
about the game from other people who played this game �the
snowball effect�.

The average number of preexisting acquaintances NC
turned out to account for 13% �NC=2.5�0.3 people� of the
friendship network in the virtual world. Hence, the network
under investigation did not develop as a growing graph of an
underlying network of social acquaintances in the real world.
The results of the survey as a function of k are shown in Fig.
3.

The average number of contacts established as a result of
playing the game, ND=6.5�1.0 people, is significantly
greater than NC. The players often meet in the real world
�e.g., people from the same city�. It is a good opportunity to
meet new people. However, the average number of contacts
maintained in the real world, NE=3.9�0.7 people, is
smaller, but still larger than NC. Hence, players maintain con-
tacts over a long time with only some of the people they met
in the real world. The results of the survey indicate that
online games may have a strong influence on the network of
acquaintances in the real world.

It should be stressed that all players we surveyed were
from the same country. In the case of MMORPGs with play-
ers from different countries, the influence of interactions in
the virtual world on contacts in the real world will probably
be smaller �because communication, travel, etc., are diffi-
cult�.

IV. INVESTIGATION OF HUMAN DYNAMICS

Online games like MMORPGs offer a great opportunity
to investigate human dynamics, because much information

FIG. 2. Relation between the clustering coefficient of a node, C

�triangles�, C̃ �boxes�, and its degree k and the fit with a power law
�dashed line�.
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about individuals is registered in databases. To analyze how
long people are interested in a single task and how much
time they devote to it, we studied cumulative time spent in
the virtual world, TG, which is registered in the game data-
base. The time TG is the sum of the duration of all connec-
tions to the game server. It turned out that the distribution of
the probability PG that an individual devotes TG hours to the
game has the power-law form PG�TG��TG

−1.10�0.03 �Fig. 4�.
Thus, the probability that a human will devote time t to a
single activity has a fat-tailed distribution. This is so because
players can lose interest in the game and abandon their char-
acters. The lifespan of an individual, TL, is defined as the
number of days from the time the individual was created to
the date of last logging. The distribution of the probability PL
that an individual has the lifespan TL is shown in Fig. 5. This
distribution can be approximated with the power law
PL�TL��TL

−1.00�0.03. The average time TL equals 69 days. For
individuals who are active for more than one month, the
average time TL equals as many as 170 days. However, we
found such a distribution of lifespan, with a different value
of the exponent, in an internet community �www.grono.net�

of over 1�106 users �21�. The behavior of the number of
active individuals as a function of time is not interesting and
quickly �after few months� reaches saturation.

It is very interesting that both distributions, PG�TG� and
PL�TL�, have the power-law form with exponents close to −1.
Similar relations concerning human dynamics have also been
observed elsewhere �21� and can be a consequence of a
decision-based queuing process. A model of such a process
was recently proposed by Barabási �11–13�. It indicates that
scale-free distributions are common in human dynamics. The
distribution of the time devoted to entertainment �i.e., a char-
acter’s lifespan� has a similar form to the distribution of the
timing of many other human activities �11�. We suggest that
different forms of activities �e.g., different forms of enter-
tainment� compete with one another and can be ranked ac-
cording to some perceived priority, like tasks in Barabási’s
model of a decision-based queuing process �11�. When a task
�a form of activity� is added to a list, it is executed as long as
it is on the list. The lower the task priority, the greater the
probability that the task will be removed from the list. How-
ever, the model should be modified in order to obtain power-
law distributions with different values of the exponents ob-
served in real systems �21� �a detailed description of the
model will be presented elsewhere�. Therefore further work
in this field is needed.

Knowing the accumulative time spent by the user in the
virtual world TG and the lifespan TL, we can calculate the
average time devoted daily to interactions in the virtual en-
vironment. By dividing this average time by 24 h we obtain
the activity A of a character. Thus, the activity Ai denotes the
probability that the ith character exists in the virtual world,

A =
TG

24TL
. �2�

The value of activity relates to the whole lifespan of an in-
dividual. However, the activity is not biased by the lifespan
of an individual, because the average time devoted daily for
playing the game is approximately independent of TL. It
should be noted that similar results �e.g., lack of correlations

FIG. 3. Results of the survey. The numbers NC �crosses�, ND

�boxes�, NE �triangles�, and the number of people who filled out the
survey �dashed line� as a function of the number of people in the list
of friends, k.

FIG. 4. Probability that an individual spends the time TG playing
the game �boxes� and fit to the power law PG�TG��TG

−1.10�0.03,
R2=0.98 �solid line�. The data were log-binned to reduce uneven
statistical fluctuations.

FIG. 5. Probability that an individual’s activity in the virtual
world lasted TL days �boxes� and fit to the power law PL�TL�
�TL

−1.00�0.03, R2=0.98 �solid line�. The data were log-binned to
reduce uneven statistical fluctuations.
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between A and TL� were found in analyzing the behavior of
5�106 players in the web service www.xfire.com.

The activity distribution P�A� is exponential �Fig. 6�a��.
The maximal value A is two orders of magnitude greater than
the minimal value of the activity. The relation between the
degree of a character and its activity is shown in Fig. 6�b�;
the greater the k, the greater the A. Hence, the activity of a
character is positively correlated with its degree and the re-
sults can be approximated with the power law

A�k� � k� �3�

where �=0.35�0.02 �see dashed line in Fig. 6�b��. The two
relations P�A� and k�A� can be fitted using one-parameter
fitting functions. On the basis of those relations we can cal-
culate the form of the degree distribution: P�k�
= P(A�k�)dA /dk. After calculations we obtain P�k�
�k�−1 exp�−	k��, where 	=1.40�0.05 �R2=0.99�. Hence,
in the network under investigation, the degree distribution
decays as a stretched exponential for large k �see Fig. 1�. It is
difficult to judge the validity of the approximation by R2

alone. Therefore, to compare the goodness of fit to power-
law and exponential decay we calculate the Kolmogorov-
Smirnov �K� statistic for three competing distributions �the
lower the value of K, the better the goodness of fit� �19�. The
results for R2 and the Kolmogorov-Smirnov statistic �K
=0.02, 0.04, and 0.02 for shifted power law, power law with
cutoff, and stretched exponential, respectively� indicate that
the goodness of fit of the stretched exponential distribution is
better than in the case of the other distributions.

Casual gamers spend their spare time playing computer
games—meeting and cooperating with others there, as
people who meet with others in real life spend their spare
time together, e.g., going for a walk, in a restaurant, in a
cinema, or at a marketplace. The characteristics of a friend-
ship network are similar to those we can observe for real life
social networks �e.g., children in one school� �1,16,25�.
Thus, we can suppose that people’s behavior in establishing
and maintaining social contacts in an artificial society is
similar to that in the real world. Therefore, we believe the
relation between the time devoted to interactions with others

�social activity� and the number of friends is similar in both
worlds. Knowing the activity of individuals, we can start to
investigate epidemic spreading and rumor propagation in the
network.

V. EPIDEMIC SPREADING

In the literature there are many models of epidemic
spreading with different mechanisms of contagion �26,27�.
However, to understand better the influence of human activ-
ity on the process of spreading, we used a simple SIR model
�7,28�. In our model, each individual is in one of three per-
mitted states: healthy and susceptible �S�, ill �I�, healthy and
unsusceptible or isolated from the rest of the population �R�.
The individual’s state evolves in time and depends on their
previous state and the connections or random contacts with
other individuals. The probabilities of transitions between
different states in one time step are described with the fol-
lowing parameters: WS→I, the probability that a susceptible
individual will be infected by an ill individual �this also de-
notes how contagious the disease is�; WI→R, the probability
that an ill individual will recover or be isolated from the rest
of the population �e.g., in a hospital�.

In SIR models based on differential equations it is often
assumed that an increase in the number of ill individuals NI
is linearly proportional to NI �7,29�. We use a similar as-
sumption in our model. We assume that the probability of an
infection of an individual by one of k neighbors in one time
step �one day� is a simple function of the number of ill
neighbors. However, to distinguish the effectiveness of inter-
actions between individuals we take into account the human
activity A �see Eq. �2��:

pi = 24WS→IAi	
j

ki
I

Aj �4�

where pi is the probability of infection per one day, WS→I is
probability of infection per one hour of contact, ki

I is the
number of ill neighbors of the ith individual, and Ai is the
activity of the ith individual. The probability of individuals

(b)(a)

FIG. 6. Activity distribution �boxes� and fit to the exponential form �dashed line� P�A��exp�−
A�, where 
=12.0�0.2, R2=0.98 �a�.
The relation between the degree of an individual and its activity �b�. Results can be approximated with the power law A�k��k0.35 �dashed
line�, R2=0.97.
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becoming infected is proportional to their activity; less active
individuals �i.e., individuals who spend less time in the vir-
tual world� have fewer opportunities to become infected than
more active ones. Similarly, we take into account the neigh-
bors’ activity. The greater the activity of ill neighbors, the
greater the probability of infection. Note that for Ai=const
the probability pi increases linearly with increasing ki

I. Other
probabilities of a transition between states X ,Y in one time
step do not depend on the structure of the network and hu-
man activity and they are described with the parameters
WX→Y.

It was recently found that the heavy-tailed distribution of
the intercontact times between susceptible and infected indi-
viduals has significant influence on the spreading of com-
puter viruses �9�. However, it is noteworthy that the influence
of human dynamics on the spreading process in the virtual
world of MMORPGs is different than in the case of sending
e-mails �9�. Sending an e-mail takes only a few minutes, but
the players after logging in spend much longer times before
they log off from the game �on average they devote daily
approximately 3 h to playing the game�. Most of the players
�especially those with high connectivity� enter the virtual
world every day �often at the same hour� and the distribution
of interevent times �i.e., times between successive log-ins�
cannot be approximated with a power law. Moreover, it sig-
nificantly depends on the degree of an individual �players
having more friends spend more time in virtual world; see
Fig. 6�. Next, in the process of propagation of information or
a pathogen the most important factor is for how long people
contact or talk with each other. In the case of computer vi-
ruses, the most important is the number of e-mails that were
sent. Therefore inclusion of the distribution of interevent
times within the proposed model would introduce nonessen-
tial complexity without giving better results.

Computations were performed for the initial conditions
with one ill �I� and randomly located individual and the rest
of the population healthy and susceptible �S�. Synchronous
dynamics were used with the assumption that individuals can
change their state only once in each time step. To investigate
the dynamics of the spreading process and the range of an
epidemic, we introduced two observables: the time tmax when
the maximal number of ill individuals is reached and the

magnitude of the epidemic, V, defined as the relative number
of individuals who had the disease during the epidemic.

The relation between the control parameters describing a
disease and the observables �V and tmax� is shown in Fig. 7.
To investigate the influence of human activity on the spread-
ing process we made computations for two different distri-
butions of activity, real and uniform Ai=const. To obtain
more comparable results the average activity was the same in
both distributions.

For large values of WI→R the magnitude of the epidemic V
increases with an increase in WS→I. In the case of real distri-
bution of the activity, V is much larger and the value of the
time tmax is lower. Hence, the epidemic spreads faster and
reaches a larger part of the network. This is a result of the
presence of very active superspreaders �30�, i.e., individuals
with large degree and a high value of social activity A. The
process of the epidemic is highly influenced by superspread-
ers, because the probability that they are connected is high
�the network is assortatively mixed by degree�. Because of
those individuals the epidemic reaches distant parts of the
network very fast, even in the case of diseases that are not
very contagious. For a uniform distribution of activity, super-
spreaders are less effective, because their activity is lower
�the activity of a node is positively correlated with its degree;
see Fig. 6�. Therefore the epidemic cannot spread in the net-
work �the magnitude of the epidemic is close to zero for low
values of WS→I�.

For low values of WI→R a decrease in the time tmax is
visible; hence the epidemic spreads faster with an increase in
WS→I �see Fig. 7�b��. The magnitude of the epidemic remains
great, even in the case of diseases that are not very conta-
gious. As a result of the presence of more active superspread-
ers in the case of a real distribution of activity, the magnitude
of the epidemic is greater.

However, for large values of WS→I the opposite situation
is true—the magnitude of the epidemic is greater in the case
of a uniform distribution of the activity. The value of degree
is positively correlated with the degree of the node. On the
one hand, the social activity of an individual with a small
number of connections is low, therefore the probability that
such an individual will be infected is very low. On the other
hand, the hubs, which are highly interconnected �the network

(b)(a)

FIG. 7. Influence of the parameter WS→I on the magnitude of the epidemic, V �a�, and the time tmax �b� for different values of WI→R �0.1
boxes and 0.9 triangles�. Black and white markers correspond to uniform and real distributions of activity, respectively. Results were
averaged over 104 independent simulations.
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is positively correlated by degree� and very active, quickly
spread the disease to other hubs. Thus, the epidemic spreads
faster �see Fig. 7�b��, but dies out quickly. As a result, the
probability that an individual with low k and low A will be
infected during the epidemic is low. Therefore, the magni-
tude of the epidemic is smaller in the case of a real distribu-
tion of the activity, because the number of such individuals is
high �see Fig. 1�.

The SIR model �where the probability of infection with kI

ill neighbors equals �kI; � is the microscopic spreading �in-
fection� rate, and infected individuals decay into the removed
class at the rate WI→R=1� shows that the expression for the
critical threshold is a function of the moments of the degree
distribution �29� �C= �k� / �k2�. If the value of � is above �C,
the disease spreads and infects a finite fraction of the popu-
lation. On the other hand, when � is below the threshold, the
total number of infected individuals is infinitesimally small
in the limit of very large populations. In networks with a
strongly fluctuating degree distribution, the epidemic thresh-
old approaches zero for increasing sizes of networks �29,31�.

To investigate the epidemic threshold in our network we
calculated the critical value of the parameter WS→I

C �WI→R�
defined as follows: for WS→I�WS→I

C , the average number of
individuals infected by an initially ill individual nI is smaller
than 1; and nI�1 for WS→I�WS→I

C . Even if we increase the
size of the network, the value of WS→I

C remains the same. The
results for both distributions of activity are presented in Fig.
8. In the case of a real distribution of the activity WS→I

C

increases more slowly and takes smaller values �on average
it is five times smaller� than in the case of a uniform distri-
bution of the activity.

The results of numerical simulations can be compared to
analytical calculations. In the case of a uniform distribution
of the activity the probability of an individual becoming in-
fected has the form

p = 24WS→I�A�2kI = �kI, �5�

where �A� is the average activity. Knowing that for WI→R
=1 the critical value WS→I

C �0.28 �see Fig. 8�, we can calcu-

late the critical value of the infection rate �C�0.04. On the
other hand, �C= �k� / �k2�, hence in our network we obtain
�C=0.06. The two results are similar. We suggest that the
discrepancy is a result of the finite size effect.

VI. RUMOR PROPAGATION

The next phenomenon that we study in this paper is rumor
propagation in a social network. We investigate the impact of
human dynamics and interaction rules on the efficiency of
rumor propagation. The model of the rumor is defined as
follows. Each of the N individuals can be in three different
states. Following the original terminology �32,33�, those
three classes correspond to ignorant �IG�, spreader �SP�, and
stifler �ST� individuals. Ignorants are those individuals who
have not heard the rumor and hence are susceptible to being
informed. Spreaders are active individuals who spread the
rumor. Stiflers know the rumor but are no longer interested in
spreading it. As result of interactions with spreaders, an ig-
norant individual turns into another spreader with the prob-
ability pSP,

pi
SP = WIG→SPAi	

j

ki
SP

Aj �6�

where ki
SP is the number of neighbors in the state SP and

WIG→SP is the parameter that describes how interesting the
rumor is.

Propagation may decay because of the mechanism of
“forgetting” or because spreaders learn that the rumor has
lost its “news value.” In the first case rumor propagation is
similar to epidemic spreading, which is described in Sec. V.
The second assumption seems to be more plausible. We
study two different interaction rules: �1� spreaders become
stiflers as a result of interactions with other active individuals
with the probability

pi
ST−1 = WSP→STAi	

j

ki
SP

Aj �7�

and �2� spreaders become stiflers if they encounter other
spreaders or stiflers with the probability

pi
ST−2 = WSP→STAi
	

j

ki
SP

Aj + 	
j

ki
ST

Aj� �8�

where ki
ST is the number of neighbors in the state ST and

WSP→ST is the parameter that describes how fast the rumor
loses its attractiveness.

Computations were performed for the initial conditions
with one randomly located spreader and the rest of the popu-
lation in the state IG. Synchronous dynamics were used with
the assumption that individuals can change their state only
once in each time step. As in the previous case we introduce
two observables: the time tmax when the maximal number of
spreaders is reached and the relative number of individuals
affected by the rumor V. The results of simulations are
shown in Fig. 9. In all simulations the value of V increases
with an increase in WIG→SP and a decrease in WSP→ST.

FIG. 8. Values of the parameters for which the number of in-
fected individuals is approximately 1. Boxes and triangles corre-
spond to uniform and real distributions of activity, respectively.
Results were averaged over 104 independent simulations.
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In the case of interaction rule 2 the probability that a
spreader becomes a stifler is higher and the average time in
which an individual can spread the rumor is lower. As a
result of positive correlation by degree, spreaders with a high
degree �superspreaders� become stiflers even faster, because
the probability that they are connected to other superspread-
ers or stiflers with a high degree is higher. In this way super-
spreaders are quickly deactivated. Hence, the final number of
individuals affected by the rumor is lower than in the case of
the interaction rule 1. The time tmax is also lower, because the
rumor cannot spread freely as a result of superspreaders’
quick deactivation. The discrepancy in the results is more
visible for low values of WIG→SP �see Fig. 9�, because for
high values of WIG→SP the probability that an ignorant will
be affected by the rumor is high enough and superspreaders
can spread the rumor to distant parts of the network before
they turn into stiflers.

In contrast to epidemic spreading, the influence of human
activity on V is less visible �cf. Fig. 7�. Moreover, in the vast
range of values of control parameters, it has an opposite
effect; the final number of individuals affected by the rumor
is higher in the case of a uniform distribution of activity.
Similar changes are observed in the dynamics of spreading,
the rumor spreads much slower �especially for interaction
rule 1� in the case of a real distribution of the activity.

The system behaves like that because of the positive cor-
relation between the degree k and the activity A of a node

observed in a real distribution of human activity �see Fig. 6�.
Because individuals with a high degree have a high value of
A, they more effectively interact with their neighbors than in
the case of a uniform distribution P�A�. Such individuals in
the state SP very quickly �but faster in the case of interaction
rule 2� learn that the rumor has lost its news value and turn
into stiflers.

The influence of degree on the average lifespan of spread-
ers, i.e., the average number of time steps before a spreader
turns into a stifler, is shown in Fig. 10�a�. The length of a
lifespan depends significantly on degree. However, the pat-
tern of this relation is different for different distributions of
the activity. In the case of the real distribution P�A�, the
spreaders’ lifespan is much higher in the range of low degree
and lower for high k. Individuals with large degree �e.g.,
superspreaders� remain approximately one time step in the
spreader state. Hence, individuals with low k and low A
mainly spread the rumor and the rate of spreading is much
slower. Similar results have been observed in some models
of epidemic spreading where high-degree nodes are vacci-
nated �26�. For a number of preventively vaccinated hubs
slightly lower than the critical value, there was an abrupt
increase in the time tmax and the magnitude of the epidemic
was smaller.

In such conditions, when superspreaders do not spread a
rumor, many nodes with low degree �and low A� which are
connected to other parts of the network with hubs cannot

(b)(a)

(c) (d)

FIG. 9. Influence of the parameter WIG→SP on the relative number of individuals affected by the rumor V �a�, �c� and the time tmax �b�,
�d� for different values of WSP→ST �5 triangles and 40 boxes�. Black and white markers correspond to uniform and real distributions of
activity, respectively. �a�, �b� and �c�, �d� correspond to interaction rules 1 and 2, respectively. Results were averaged over 104 independent
simulations.
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hear the rumor. The probability that an individual hears the
rumor decreases with decreasing k, and is lower in the case
of the real distribution P�A� in the large range of control
parameters �see Fig. 10�b��. Because most individuals have
low degree, the number V is lower in the case of a real
distribution of the activity �see Figs. 9�a� and 9�c��.

However, for low values of WIG→SP, and low values of
WSP→ST, the value of V is slightly higher in the case of a real
distribution than in the case of a uniform distribution of
P�A�. This is so because highly interconnected hubs are very
active and can spread the rumor to other hubs, before they
turn into stiflers �even if the rumor is not very interesting,
low WIG→SP�. The rumor spreads mainly among individuals
with large degree. In the range of low k the relative number
Vk of individuals with the degree k affected by the rumor has
similar values for both distributions of the activity. For a
uniform distribution of P�A� the social activity of hubs is
lower; hence, the probability that a hub will hear the rumor is
also lower �see Fig. 10�. The discrepancy in Vk increases
with increasing k, before the Vk�k� relation reaches satura-
tion.

VII. CONCLUSIONS

We have shown that a friendship network maintained in a
virtual world has similar properties �e.g., large clustering, a
short average path length, assortative mixing by degree� to
other social networks. On the basis of the playing time of
each individual recorded on the server, we have presented
results concerning human dynamics. The power-law form of
the distributions PG�TG�, PL�TL�, and A�k� and other authors’
results �11� indicate that such a scaling law is common in
human dynamics and should be taken into account in models
of the evolution of social networks and of human activity.
We have also shown that meeting people in a virtual society
has a much greater influence on the real society than the
other way round.

We have found that the distribution of the activity A of
individuals �i.e., the relative time daily devoted to interac-
tions with others� is exponential. It should be stressed that

the activity of an individual is positively correlated with its
degree.

The next conclusion is that human activity has a signifi-
cant influence on the dynamic processes in a social network.
The process of epidemic spreading in a social network has
been investigated numerically.

It turned out that an epidemic spreads faster and for a
large range of values of the control parameters the magnitude
of an epidemic is greater in the case of a real distribution of
activity, as a result of the presence of very active super-
spreaders �individuals with a high degree and a large value of
social activity� in the social network. In the case of an epi-
demic in a real population the pattern of human behavior will
change. In times of severe epidemics, people decrease the
time devoted daily to interactions with others �activity A� to
avoid infection. However, we suggest that in the case of
limited epidemics �low values of WS→I�, when the number of
ill individuals is relatively low �e.g., annual influenza epi-
demics�, the change in social activity is low too. Therefore,
models that take into account data on human social activity
seem to be more plausible for modeling epidemic spreading
in the human population than models that do not take into
account human dynamics, e.g., models of computer viruses
�9�.

Moreover, rumor propagation in a real social network has
been investigated numerically. We studied two different in-
teractions rules: �1� spreaders become stiflers as a result of
interactions with other active individuals, and �2� spreaders
become stiflers if they encounter other spreaders or stiflers.
For both interaction rules, the influence of a real distribution
of activity is the same. In contrast to epidemic spreading,
rumor propagation is slower and for a vast range of values of
control the final number of individuals affected by the rumor
is lower.

We have found that taking into account a real distribution
of social activity speeds up epidemic spreading; however, it
decreases rumor propagation. Our results indicate that the
influence of human social activity on dynamic phenomena in
social networks significantly depends on the types of phe-
nomena and interaction rules involved.

(b)(a)

FIG. 10. Relation between degree of an individual k and the average lifespan of spreaders �a� and the relative number of individuals
affected by the rumor Vk �b� for different values of WSP→ST �5 triangles and 40 boxes� and for the second interaction rule. Values of other
parameters: WIG→SP=16. Black and white markers correspond to uniform and real distributions of activity, respectively. Results were
averaged over 104 independent simulations.
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In future work, we will consider investigating the influ-
ence of human social activity on epidemic spreading for dif-
ferent mechanisms of contagion. Next, of further interest
would be a more careful exploration of rumor propagation
and opinion formation in on-line communities taking into
account the lifespan TL of an individual.
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